

Dr Ken James Research Engineer Fellow, University of Melbourne

Trees and Winds

Introduction

- 1. FORCES on Trees in winds
- 2. <u>STRUCTURE</u> of Urban Trees
- 3. Failure of Trees in winds
- 4. Wind Environment in Cities
- 5. Manage trees in storms
- 6. **STABILTY** of Trees

STRUCTURAL Differences Urban Trees Forest Trees

Hyde Park, Sydney, Australia

Urban Tree Failure - Shallow Root Plates

Melbourne, Australia

Soil DEEP Not disturbed

What are the Wind Loads on Trees?

WIND Load - Biggest FORCE on Trees (DYNAMIC)

Wind Loads – DYNAMIC not Static

Wind Loads – toilet blown upwards?

Dynamics of Forest Trees

Few branches - Large Sway - LOW DAMPING

Dynamics of Urban Trees

Many branches - Complex sway - Mass Damping

Replay – normal speed

Replay – x3 normal speed

VIDEO: 1. windclad1.mp4 2. windclad3.mp4

Structural Loads on Trees

Ficus, Botanic Gardens, Sydney, Australia

Static Forces - Weight

Ficus, Botanic Gardens, Sydney, Australia

Static Pull Test

Note: Top of tree removed for Static Test

1. Dynamic Forces – Wind Gusts

Ficus, Botanic Gardens, Sydney, Australia

2. Dynamic Wind Forces - Damping

Ficus, Botanic Gardens, Sydney, Australia

3. Dynamic Wind Forces - Inertia

Example of Dynamics – Inertial Forces

Moving masses, Big Forces

Big Mass moving, INERTIAL FORCES keep it moving

How do Trees fail in wind?

Wind creates Overturning Forces at base

Copyright Ken James 2020 HK 2020

Root Plate Failure - "not all at once"

- Root fatigue may be important
- Failure is not "All at once"
- Some roots may fail in a storm, causing tree to move slightly
- Rocking occurs in next storm
- Progressive root damage occurs
- Finally tree falls.

Nelson, New Zealand

Tree Failures in Wind

Forces - Rootplate Failure

Research Tests using NASA technology, The Moreton Arboretum, USA

Root Plate Failure – cohesive (clay) soils

Root Plate Failure – cohesive (clay) soils

Root Plate Failure – Non cohesive (sand) soils

SHEAR Failure – Sand slips under load

Sandy Soil

- shear failure
- failure as sand slips
- circular pattern

The Wind Environment in Cities

Typhoon Mangkhut officially Hong Kong's most

intense storm since records began

Hong Kong Observatory said sustained winds reached 250km/h

Max 60-minute mean wind speeds

161 km/h - Waglan Island

157 km/h - Cheung Chau

Buildings changes Wind profile in Cities

Copyright Ken James 2020 HK 2020

Wind speed increases around buildings

Funnel effect of streets

An uprooted tree blocks Tak Shing Street in Jordan after Typhoon Mangkhut. Photo: Sam Tsang

An uprooted tree blocks Tak Shing Street in Jordan after Typhoon Mangkhut. Photo: Sam Tsang

An uprooted tree blocks Tak Shing Street in Jordan after Typhoon Mangkhut. Photo: Sam Tsang

Wind Speeds – Tree Failures

Wind speeds – Hurricanes USA and Hong Kong 2018

The higher the wind speed of the hurricane, the more likely trees will fail

Copyright Ken James 2020

How to Measure Wind Loads on Trees

Research Project – James 2010

Ref: James 2010

Strain meters attached to tree trunk.

Wind load - not uniform on all trees

B. Gardiner et al. / Plant Science 245 (2016) 94-118

Fig. 4. Flow development over a change in surface conditions such as the edge of a forest.

- Sheltering is very important
- Direction of wind is also very important

Topography influences wind speed

- Topography local effects very important
- Wind speed varies for trees around hills

What can be done to protect trees in winds?

- 1. Cable supports
- 2. Secure root system
- 3. Design in Cities Protect/Shelter
- 4. Monitor Tree Stability in winds

Tornado flattens 200 year old Cashmir Cypress

Italy, 2006, Isola Madre

June 29, 2006, Tornado winds from storm

200 year old Cashmir Cypress (Cupressus cashmeriana) blown over

Very valuable, symbol of the Borremeo family

2. Secure root system to support tree

This tree may not have failed in the wind storm, if root plate tied down after it was transplanted.

3. Design options for Trees in Cities Protect trees from storms

Tree growing above Carpark

4. Tree Stability can be measured Instrument records Root plate tilt in winds

Tree Stability - Tilt Instrument

Stability – Tilt Sensors

SPAIN - 2019

Summary

STABLE Trees	Tilt below 0.60 degrees
Inspect Tree Possible Partial failures	Tilt 0.60 to 1.00 degrees
DANGER Zone for Trees	Tilt above 1.00 degrees

New instruments, Tree Motion Sensor record tree stability in winds

- Used to confirm stability
- Does not predict failure

Tilt Sensors

PiCUS TMS – Tree Motion Sensor

The Wind-Reaction-Measurement with PiCUS TMS is used for in depth tree inspections to obtain information about a tree's stability, defined by its root anchoring force in the ground.

PiCUS TMS 3 - consistently innovative

Bluetooth-communication – control via mobile phone

New inclination measurement – quick and simple installation

Small and stealthy – Even you will have trouble finding it!

Data on tree stability

"Without data you're just another person with an opinion."

W. Edwards Deming

Enginee

William Edwards Deming was an American engineer, statistician, professor, author, lecturer, and management consultant. Wikipedi

Born: October 14, 1900, Sioux City, Iowa, United States
Died: December 20, 1993, Washington, D.C., United States
Awards: National Medal of Technology and Innovation, Shewhart Medal,
Wilks Memorial Award

Wind tunnel tests on trees

(Aly 2013)